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Executive Summary 
 

This deliverable concerns a formal validation of the AI models developed for the first 
(simplified) version of the healthcare problem. These models will be designed by CWI 
and validated by medical experts from LUMC. The report will present the first insights 
on the results obtained with the model results and suggestions for modifications. 
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1. Introduction 
In this use case we focus on paraganglioma (i.e., a type of tumors) in the head and neck 
area. Although they are usually benign and slow growing, they can cause severe 
complaints such as cranial nerve dysfunction and hearing loss. On the one hand, if the 
tumors stay small over the lifetime of the patient and the patient does not experience any 
complaints from the tumor, the patient does not benefit from treatment such as 
radiotherapy and surgery. In this case, the treatment could do more harm than good, 
because of the risks associated with the treatment. On the other hand, if the tumor grows 
big over the lifetime of the patient, the patient is more likely to develop severe complaints 
and one would have wanted to intervene as early as possible (especially since complaints 
can be irreversible). 
 
As of right now, it is hard to predict how the tumor will develop. This imposes a difficult 
dilemma; should we treat this patient? If so, when? If we were able to predict the tumor 
development for a patient, and maybe even how this development contributes to future 
complaints due to the tumor, this could support on the one hand giving inevitable 
treatment early on (with likely less risk and potential complications) and on the other 
hand avoiding unnecessary, stressful, and costly follow-ups. 
 
In [1], different known functions for describing tumor growth were fitted on 77 
paraganglioma tumors. These functions concern the linear function, the exponential 
function, the Mendelsohn function. the Gompertz function, the logistic function, the 
Spratt function and the Bertalanffy function. The general shape of these functions is 
described in Figure 1.  
 
Per tumor a total of 3 volume measurements were available. It was concluded that the s-
shaped functions are the best fit. However, for all the fitted functions, there are instances 
of tumor growths where the predicted volume at conception and/or the volume at the end 
of the life of the patient is unrealistic. Therefore, we want to use eXplainable Artificial 
Intelligence (XAI) to automatically find a well-fitting tumor growth function that adheres 
to constraints, such as having a realistic volume at the end of the life of the patient, without 
making any assumptions about the specific function structure. Moreover, using XAI it 
should be possible to arrive at a function that is still interpretable by humans. By making 
very few assumptions about the function structure, it should be possible to find a tumor 
growth function that fits the data well. The resulting function could possibly be one of 
the 6 pre-existing functions, or a new function altogether. 
 
We will tackle this problem of developing a new, human-interpretable, growth function 
using evolutionary algorithms, in particular genetic programming. 
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Figure 1: General shape of known tumor growth functions. Source:[1]. The x-axis 

represents the time (years) and the y-axis represents the volume (cc). 
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2. Problem formalization 
Firstly, we will develop a model, or equivalently said, a function, that predicts tumor 
growth. The tumor growth function 𝑓! of a tumor 𝑇 predicts the volume of the tumor 𝑉!,# 
at a specific point 𝑙# in the lifetime of the patient carrying the tumor. Therefore, a function 
predicting the tumor volume over time can be formalized as: 𝑉!,# = 𝑓!(𝑙#). With this we 
can, for example, predict for a specific patient the expected tumor volume at different 
time points during their lifetime. This gives a lot of information on the scale of the growth 
of the tumor. However, knowing the function class 𝑓 of the growth functions of all tumors 
of all patients is relevant information as well. If, for example, we know that 𝑓 is a logistic 
function, we would know that all tumors at some point will get to a plateau, whereas with 
a linear function this would not be the case. The parameters of the function class can then 
be fit to each specific patient, using patient-specific information, to get a prediction 
function. 
 
It is possible that tumor growth can be divided over several function classes, for example, 
in the case where specific genetic mutations cause different growth functions. In this case, 
dividing the patients into groups and fitting a function class to each group would be 
sensible. This will be elaborated in the future work section. 
 
For every patient we need tumor volume measurements at 3 moments in time. This is the 
minimum required number of measurements, since 1 or 2 measurements cannot capture 
accelerating or decelerating growth. Therefore, we have 𝑙# = [𝑙#! , 𝑙#" , 𝑙##] and 𝑉!,# =
[𝑉!,#! , 𝑉!,#" , 𝑉!,##]. If we would assume 𝑓 to be linear, e.g., 𝑉 = 𝑎 + 𝑏 ⋅ 𝑙, we need to find 
constants 𝑎# and 𝑏# for the three measurements of every tumor such that the mean of the 
squared error between 𝑓#(𝑙#) = 𝑎# + 𝑏# ⋅ 𝑙# and the actual volume for all tumors is 
minimized.  
 
In optimizing a function class 𝑓 and its instances	 𝑓!, we consider the following 
constraints:	

- In the literature, paraganglioma tumor volumes are assumed to be monotonically 
increasing [3].  

- At conception there cannot be any tumor volume since the one cell existing cannot 
be a tumor cell.  

- It is physically impossible that the tumor volume increases endlessly. The biggest 
paraganglioma tumor known in the LUMC is 1,190 cc. Therefore, we will assume 
that the volume cannot grow bigger than 1,500 cc.  
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3. Solution approach 
We use the Real Valued Gene-Pool Optimal Mixing Evolutionary Algorithm (RV-
GOMEA) [4], a version of the Gene-Pool Optimal Mixing Evolutionary Algorithm 
(GOMEA) specifically aimed at problems with real-valued variables, to fit the parameters 
of the function class per patient. We choose RV-GOMEA over a gradient-based approach 
because we have observed in preliminary experiments that function classes can be ill-
conditioned, leading to exploding or vanishing gradients. 
 
Since we do not yet know the function class of tumor growth of paraganglioma, we 
propose to first use the Genetic Programming Gene-Pool Optimal Mixing Evolutionary 
Algorithm (GP-GOMEA) [5] to find this function class, which is state-of-the-art for this 
kind of problems [6]. Specifically, we optimize the function class, where a solution is a 
function of mathematical operators, variable 𝑙 (the age of the patient when measuring the 
tumor volume), and function class constants. To determine the quality of a function class, 
the function class is passed to RV-GOMEA, which optimizes the function class constants 
for each tumor, i.e., a tumor-specific fit is made for each tumor. Ultimately, the fitness of 
a function class then is calculated by taking the mean error taken over all tumors. The 
error per tumor is defined as the Mean Squared Error (MSE) of the RV-GOMEA tumor-
specific-tuned function over the three measurements. In other words, the quality of a 
function class is given by its average adaptability (by fitting its parameters) to different 
patients. 
 
In the function class, we use only one variable (lifetime of the patient 𝑙#), and (potentially) 
multiple function class constants. A function class constant is treated as a terminal node 
by GP-GOMEA, while it can have a different value for different tumors (i.e., after it has 
been optimized with RV-GOMEA). Therefore, a small population size for GP-GOMEA 
will likely be sufficient. However, as we cannot be sure about the best possible population 
size, we use a starting population size of 30 individuals and the Interleaved Multi-start 
Scheme (IMS) scheme. We run the IMS for 10 meta-generations.  
 
We use the mathematical operators ×,÷$, +, −,%& , ^, exp	and a tree height of 4 (i.e., 31 
nodes). We choose a maximum tree height of 4, because this was reported to be the 
maximum tree height at which functions likely can still be interpreted [5]. 
 
For RV-GOMEA we set the maximum number of evaluations to 50,000 (which generally 
takes less than a second in our case). In addition, we set the hard bounds for the parameter 
values at -1e+308 and 1e+308. For the initialization ranges, we first compute the biggest 
value 𝑏 in the training data (i.e. the biggest age 𝑙#) of all patients. We then set the 
initialization range to [−5 × 𝑏, 5 × 𝑏]. 
 
The constraints will be implemented as follows: 

- For every tumor, we check whether 𝑉!,#$ ≤ 𝑉!,#$%! at 1,000 timepoints  𝑡' equally 
spread between the moment of conception and the moment when the patient is 99 
years old.  If for any of the timepoints this does not hold, the constraint is violated.  

- For every tumor, we check whether 𝑉!,#$ ≤ 1,500	𝑐𝑐, with 𝑡' the point in time at 
which the patient is 99 years old. If this is not the case, the constraint is violated 

- For every tumor, we check whether 𝑉!,#$ ≤ 0.01	𝑐𝑐, where 𝑡' is the point in time 
at which the patient is conceived If this is not the case, the constraint is violated. 
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We use 0.01 as threshold instead of 0 since there are functions that can only be 
bigger than 0 such as exponential functions. Here we see 0.01 cc as negligibly 
small.  

In the algorithm, a change in a solution is only accepted if there are less or equal violated 
constraints, and the fitness is equal or better.  
 
An overview of the proposed algorithm is shown in figure 2.  
 

 
Figure 2 The Function Class learning cycle. First, we initialize the 

population. Then, we calculate the fitness for each function class (or individual) and 
tune the function class constants (in orange) to each patient. Finally, we perform 

variation and selection and calculate the fitness again 
 
 
To evaluate the function found by the above function class algorithm, Function Class 
Genetic Programming Real Valued Gene-Pool Optimal Mixing Evolutionary Algorithm 
(FC-GP-RV-GOMEA), we compare it to six suggested functions for growth published in 
the literature. For the fitting of these six functions to our patient data we use RV-GOMEA 
with a maximum of 500,000 evaluations per function and we apply the same constraints 
as for FC-GP-RV GOMEA.  
 
 

3.1. Feature engineering 
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We use the linear dimension measurement method [1] to measure the volume of the 
tumors. In this method, the largest diameter is measured manually by a PhD student in 
the X, Y, and Z dimension in 3D space based on a 3D TOF gadolinium enhanced MR 
scan. The tumor volume is then calculated by assuming it has an ellipsoid shape.  
 
The measurements for the training data were performed by two PhD students. If 
measurements at the same point in time differed more than the previously determined 
smallest detectable difference (10% for carotid body and 25% for vagal body 
paragangliomas), consensus was reached. Otherwise, the mean was taken over these two 
measurements. 
 
For the test data, we use the measurements collected during regular follow-up by a 
radiologist as a starting point. Note that the radiologist may differ over the different 
measurements. Not all measurements were complete, and possibly suffer from 
inconsistencies. To remedy this, a single radiologist completed the missing 
measurements, and checked the existing measurements using the MR scans. 

3.2. Explainable AI approach 
We propose this function class algorithm because of the intended inherent interpretability 
of the resulting models when compared to a model that just predicts the tumor volume of 
the next follow-up based on former measurements of the tumor. By giving a function 
based on time, we explicitly model the connection between time and volume. We think 
this may well result in a model that is more interpretable than, for example, using SHAP, 
which would result in an overview of how each volume measurement is estimated to 
contribute to future predictions. Furthermore, we find our approach more adequate for 
predicting tumor growth over time, because it also shows the relation between volume 
and time at points in time that are not in the data set. 
The main difference in interpretability between our approach and methods like SHAP is 
that we create inherently interpretable models that explicitly model the relation between 
input and output variables, whereas SHAP attempts to visualize an estimation of this 
relation.  



 Use Case 1 - Healthcare 
 

 
13 

4. Preliminary results 

4.1. Data 
The data consists of volume measurements at 3 time points of 77 tumors. These are all 
used as training examples. For 10 of the 77 tumors we collected additional volume 
measurements, which are used as test data. For these 10 tumors, we calculated the volume 
from all the available MR scans acquired after the 3rd time point used for training. This 
resulted in 15 additional measurements: six tumors with one additional measurement, 
four tumors with two additional measurements, and one tumor with three additional 
measurements. 

4.2. Performance discussion 
In Figure 3, a boxplot of the Root Mean Squared Error (RMSE) of the 77 tumors for the 
six known functions and the newly discovered function is illustrated. In this discussion 
we excluded the exponential function since it can obviously not fit the data well. Figure 
2 enables us to compare the quality of the new function class found and the quality of the 
known functions for the 77 tumors. As we can see, the function found by the implemented 
algorithm (FC-GP-RV GOMEA) has the best median RMSE as well as the lowest 
maximum RMSE. Additionally, we compare the RMSE of the known function with the 
newly found function using a Wilcoxon Signed Rank Test with a Bonferroni correction 
and an alpha of 0.05. We find that the new function is significantly better (i.e., having a 
smaller RMSE) than all the known functions.  

 
Figure 3: Box plot of the RMSE per tumor for fitting the train data. The volume is in cc. 
The orange bar indicates the median relative error, the upper and lower bounds of the 
box indicate the 75th and 25th percentile, respectively. The whiskers indicate the 0th and 

100th percentile, excluding outliers, which are indicated by the circles. 
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In Figure 4, a boxplot of the absolute error as a percentage of the total volume for the 
additional measurements is illustrated. By taking the error as a percentage of the total 
volume, we look at the error relative to the volume of the tumor, rather than the absolute 
error. This gives a better view of prediction accuracy when the data contains tumors with 
different volumes. We see here that the newly found function is quite consistent in the 
error percentage it makes. When interpreting these scores, one should consider that it is 
highly likely that there are measurement errors (with an approximate maximum of 25%) 
both in train and test data [2]. As well as a possible interobserver error because the 
measurements of the train data and of the test data are made by a different observer. 
Additionally, we compare the error percentages of the known function with the newfound 
function in a Wilcoxon Signed Rank Test with a Bonferroni correction and an alpha of 
0.05. We find that there is no significant difference between the new function and all the 
known functions. 
 

 
Figure 4: Box plot of the error relative to the total tumor volume (in percentages) for 

predicting test data volume for each measurement of a tumor. The orange bar indicates 
the median relative error, the upper and lower bounds of the box indicate the 75th and 

25th percentile, respectively. The whiskers indicate the 0th and 100th percentile, 
excluding outliers, which are indicated by the circles. 
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4.3. Explainability discussion 
 
The resulting model is as follows,  

𝑉!,#(𝑙#) = 𝑎 +
𝑏
𝑐

𝑑 + 𝑙#
, 

where 𝑉 is the tumor volume and 𝑙#	is the age of the patient in years with 𝑙( at conception. 
Further, 𝑎, 𝑏, 𝑐,	and 𝑑 are constants that need to be optimized per tumor. 
 
Although this function indeed expresses a certain relation between tumor volume and 
time, there are some improvements possible regarding interpretability. 
Note that we cannot straightforwardly simplify the double division in this equation 
because we have used protected division. This protected division and wide variety of 
possible constant values make it harder to understand the relation between time and tumor 
volume. Future experiments will therefore include another division operator and smaller 
bounds for the function class constant values.  

4.4. Practitioners’ validation 
We designed a questionnaire to have the model validated by a clinician.  
 
In this questionnaire, we asked several questions about three patients that had the most 
additional measurements. First, we provided information about the specific patient, such 
as the location of the tumor and the Body Mass Index (BMI). Hereafter, we provided a 
plot of the predicted growth curve as well as the volume measurements used as training 
data points. We then asked the clinician to judge the likeliness of the predicted growth 
curve as well as the treatment policy they would propose. After this, we again showed the 
patient specific information and the growth curve together with the used training data 
points, however, now, we also included the additional measurement(s) (i.e., the test data 
point(s)) in the plot. We asked the clinician to again judge the likeliness of the predicted 
growth curve as well as the treatment policy they would have proposed knowing these 
new data points. Figure 5 and 6 show examples of the plots shown to the clinician.  
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Figure 5: First example of plots of one tumor shown to the clinician in the 

questionnaire. In these figures, the x-axis is the age of the patient carrying the tumor, 
the y-axis is the volume in cc, the green points are the training points, and the red 

points are the test points, the blue line indicates the predicted growth curve. 
 
 

  
 

Figure 6: Second example of plots of one tumor shown to the clinician in the 
questionnaire. In these figures, the x-axis is the age of the patient carrying the tumor, 

the y-axis is the volume in cc, the green points are the training points, and the red 
points are the test points, the blue line indicates the predicted growth curve. 

 
The growth curves were judged to be likely based on the illustrated curve with training 
data points. However, this likeliness decreased for all three patients after seeing the test 
data points. Based on the comments of the clinician, we point out two main reasons for 
this. Firstly, the prediction will likely increase in uncertainty for time points further in the 
future, i.e., the curve becomes less accurate over time. We observed that for two patients 
with more than one additional measurement, this was the case. However, in clinical 
practice the new data points can be taken into account once they become available. 
Secondly, there is a possible measurement error when using the linear dimensions 
method. This makes it harder to say whether the growth curve is inaccurate, or the data 
points are inaccurate (due to the measurement error). 
 
The clinician had the same proposed policy for two of the three cases before and after 
seeing the additional measurements. In the last case, the answer suggested that the 
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clinician was in doubt between 2 and 5 years for a next follow-up moment, but proposed 
2 years to be on the safe side. After seeing the new measurements, the clinician decided 
that 5 years was the most appropriate interval for follow-up.  
 
The clinician estimated that the clinical relevance of such a growth model is high because 
it can give both the patient and clinician trust in the proposed policy.  
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5. Conclusions 

5.1. Future developments in the Use 
Case 

In the future, we plan to make a deep-learning-based automated tumor segmentation 
approach based on which the tumor volume can be calculated. This would enable us to 
include more measurements and more patients in the growth model. Additionally, it could 
possibly reduce the measurement error. Finally, this model could have direct clinical 
relevance since measuring the tumor is a standard procedure in follow-up, and therefore 
it would be beneficial if measurement error and efforts that need to be made by the 
radiologist when measuring the tumor could be decreased. 
 
Additionally, we plan to work on the interpretability of the growth model, for example 
by replacing less interpretable operators such as the protected division and setting more 
constraints on the possible values of the function class constants.  
 
In consultation with the clinician, we figured that not only the expected size and the 
growth of the tumor is important for treatment decision making, but the location/direction 
of the growth plays an important role as well. Firstly, this is because growth towards some 
parts of the body might complicate treating the patient [7,8,9]. Secondly, growth towards 
specific parts of the body might cause new complaints [7]. Therefore, it might be of 
interest to also consider this in the project. 
 
Lastly, we plan to implement a multi-tree multi-objective multi-modal version of the 
function class algorithm to get diverse sets of growth models that can be inspected by the 
clinicians. As mentioned before, it could be the case that there are specific groups of 
tumors that adhere to different function classes. Additionally, it could be the case that 
different function classes are possible on the same data where a clinician might be more 
interested in one of the classes because of their knowledge and experience. Therefore, we 
think the multi-tree multi-objective multi-modal approach will be useful. 
 

5.2. Recommendations for TRUST-AI 
Framework 

We recommend making it possible to use the multi-tree, multi-objective, multi-modal 
algorithm in the framework [10]. It could especially be interesting to consider 
implementing a custom interface for model selection that can be used alongside this 
algorithm. 
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